Disciplina Discipline PEN5010
Avaliação de Projetos de Geração e Usos Finais de Energia

Assessment of Energy Production and End Use Projects

Área de Concentração: 106133

Concentration area: 106133

Criação: 28/06/2023

Creation: 28/06/2023

Ativação: 28/06/2023

Activation: 28/06/2023

Nr. de Créditos: 4

Credits: 4

Carga Horária:

Workload:

Teórica

(por semana)

Theory

(weekly)

Prática

(por semana)

Practice

(weekly)

Estudos

(por semana)

Study

(weekly)

Duração Duration Total Total
2 1 2 12 semanas 12 weeks 60 horas 60 hours

Docente Responsável:

Professor:

Ildo Luís Sauer

Objetivos:

1 Propiciar a identificação e caracterização das alternativas tecnológicas de produção de combustíveis (petróleo e gás natural e biocombustíveis) e de geração de energia elétrica quanto ao potencial (teórico, técnico, econômico e de mercado), rendimento e outros condicionantes: Hidrelétricas, Gás natural,Carvão, Óleos combustíveis, Biomassa/biogás, Nuclear, Eólica, Fotovoltaica, Outras 2. Atualizar nível de informação sobre a disponibilidade das fontes e recursos e distribuição e expansão das tecnologias de geração no mundo e no Brasil utilizando as estatísticas internacionais disponíveis 3. Promover o entendimento das fases do processo de avaliação de projetos de geração e de usos finais de energia 4. Desenvolver aptidões de análise das alternativas de geração e usos finais de energia segundo critérios técnicos, econômicos, regulatórios e ambientais, considerando distintos contextos e necessidades sociais 5. Exercitar os conhecimentos adquiridos através da resolução de problemas e exemplos práticos - Exercícios sobre viabilidade das alternativas de geração - Exercícios sobre usos finais de energia.

Objectives:

Allow the identification and characterization of technological alternatives for fuel energy (oil and gas and biofuels) and for electric power generation in terms of potential (theoretical, technical, economic and market), efficiency and other constraints: Hydroelectric, Natural gas, Coal, Fuel oil,Biomass/biogas - Nuclear - Non-renewable Conventionalo Wind o Photovoltaic o Others 2. Update the level of information on the availability of sources and resources and the distribution and expansion of generation technologies in the world and in Brazil using available international statistics 3. Promote understanding of the phases of the energy assessment process energy generation and end-use projects 4. Develop skills for analyzing alternatives for generation and end-uses of energy according to technical, economic, regulatory and environmental criteria, considering different contexts and social needs 5. Exercise the knowledge acquired through the resolution of problems and practical examples - Exercises on feasibility of generation alternatives - Exercises on final energy uses.

Justificativa:

A análise de projetos de geração de energia elétrica assume, nos últimos anos, um caráter renovado, por fatos de significativa relevância mundial e nacional: as falhas e crises provocadas pela superação do modelo econômico que engendrou a reestruturação setorial nos anos 1990, os acidentes ocorridos nos segmentos de produção (Macondo) e geração (Fukushima) de energia, o barateamento e expansão das fontes renováveis modernas, as restrições ambientais e sociais cada vez maiores, a descoberta de novos recursos fósseis não convencionais. Pelo lado da demanda, o surgimento de novas possibilidades e modelos de prestação de “serviços energéticos”, como o automóvel elétrico, a multimodalidade, os prédios inteligentes e outros. Diante da multiplicidade de variáveis e interesses que integram essa problemática, a capacidade de dimensionamento e análise do impacto econômico, social e ambiental de mais de uma alternativa para projetos de geração de eletricidade torna-se um conhecimento crucial para a formação do profissional da área, passível de atuação futura como gestor, pesquisador, analista, regulador, ou futuro docente, para que esteja apto a avaliar criticamente as opções disponíveis e as consequências das decisões tomadas, ao longo de todo o ciclo de vida de um projeto.

Rationale:

The analysis of electric energy generation projects assumes, in the last years, a renewed character, due to facts of significant global and national relevance: the flaws and crises provoked by the overcoming of the economic model that engendered the restructuring industry in the 1990s, accidents in the production (Macondo) and generation (Fukushima) of energy, the cheapening and expansion of renewable sources modern times, ever-increasing environmental and social restrictions, the discovery of new unconventional fossil resources. On the demand side, the emergence of new possibilities and models for providing “energy services”, such as the automobile electric, multimodality, intelligent buildings and others. In the face of the multitude of variables and interests that integrate this problem, the ability to dimensioning and analysis of the economic, social and environmental impact of more than one alternative for electricity generation projects becomes crucial knowledge for the training of professionals in the area, capable of future performance as a manager, researcher, analyst, regulator, or future teacher, so that you are able to evaluate critically assess the options available and the consequences of decisions made, over the course of of the entire life cycle of a project.

Conteúdo:

Descrição, análise crítica e exercícios sobre a viabilidade das distintas formas de geração de energia: • Energia hidroelétrica: grandes usinas e Pequenas Centrais Hidroelétricas – PCH • Usinas em operação no Brasil e sua importância no mundo • Energia nuclear: usinas nucleares e o ciclo do combustível nuclear - Situação atual no Brasil e no mundo. Futuro da usina nuclear • Usinas de geração elétrica acionadas com gás natural: usinas com turbinas a gás, em ciclo simples e combinado, industriais e aeroderivadas, motores a gás • O papel do gás natural boliviano, e o gás de Campos • Usinas eólicas: situação no mundo, potencial brasileiro • Usinas acionadas com biomassa: bagaço de cana, madeiras, resíduos de biomassa • Energias de outras fontes: solar térmica, solar fotovoltaica, células de combustível 2. Análise crítica e exercícios sobre usos finais de energia • Motores elétricos, iluminação, aquecimento de água, geladeiras, condicionadores de ar etc.

Content:

Description, critical analysis and exercises on the viability of the different forms of energy generation: • Hydroelectric energy: large plants and Small Hydroelectric Plants – PCH • Plants in operation in Brazil and their importance in the world • Nuclear energy: nuclear plants and the energy cycle nuclear fuel - Current situation in Brazil and in the world. Future of the nuclear power plant • Natural gas powered electric generation plants: plants with gas turbines, in simple and combined cycle, industrial and aeroderivatives, gas engines • The role of Bolivian natural gas, and gas from Campos • Wind power plants: situation in the world, Brazilian potential • Power plants powered by biomass: sugarcane bagasse, wood, biomass residues • Energy from other sources: solar thermal, solar photovoltaic, fuel cells 2. Critical analysis and exercises on end uses of energy • Electric motors , lighting, water heating, refrigerators, air conditioners, etc.

Forma de Avaliação:

Avaliação mediante: conjunto exercícios, trabalho final e prova, com pesos iguais.

Type of Assessment:

The course work comprises a set of exercises, term paper and test, with equal weigh.

Bibliografia:

• ABECASSIS, F. E N. CABRAL. (1991). Análise Económica e Financeira de Projectos. Serviço de Educação. Fundação Calouste Gulbenkian. Lisboa • ALLEN, D., 1991. Economic evaluation of projects. Warwickshire: Institution of Chemical Engineers. • BLACK; VEATCH. Power Plant Engineering. Chapman Hall, New York, NY, 1996 • BREALY, R.A.; MYERS, S.C. Principles of Corporate Finance. McGraw-Hill, 2006. • BUARQUE, Cristovam. Avaliação Econômica de Projetos: Uma apresentação Didática. Rio de Janeiro: Campus, 1984. • CELIK, A.N., 2002. Optimisation and techno-economic analysis of autonomous photovoltaic–wind hybrid energy systems in comparison to single photovoltaic and wind systems. Energy Conversion and Management, 43(18), 2453- 2468. • DUSONCHET, L.; TELARETTI, E., 2010. Economic analysis of different supporting policies for the production of electrical energy by solar photovoltaics in eastern European Union countries. Energy Policy, 38(8), 4011-4020. • EHRLICH, P. J. (2009). Engenharia Econômica. São Paulo: Atlas. • FILHA, D.C.M; CASTRO, M.P.S. Project Finance: estruturação de financiamentos. Revista do BNDES . v.7, n.14, p.107-124, dez.2000. • FINNERTY, J.D. Project Finance: engenharia financeira baseada em ativos. São Paulo: Ed. Quality, 1998. • HIRSCHFELD, H. (2007). Engenharia econômica e análise de custos. São Paulo: Atlas. • INTERNATIONAL ENERGY AGENCY. Energy Balances of OECD Countries. Several editions, Paris • INTERNATIONAL ENERGY AGENCY. Energy Balances of Non-OECD Countries, 2006 edition, Paris • JOSKOW, P.L., PARSONS, J.E. The economic future of nuclear power. Daedalus 138.4 (2009): 45-59. • REDDING, J. R.; MACGREGOR, P. R., 1993. Advanced Nuclear Plants: Meeting the Economic Challenge, presented at the American Nuclear Society 1993 Winter Meeting, San Francisco, California. • KALOGIROU, S., 1996. Economic analysis of solar energy systems using spreadsheets. Renewable Energy, 9(1-4), 1303-1307. • KAPLAN, P., 2008. Power plants: characteristics and costs. Washington: Congressional Research Service. • KHATIB, H., 2003. Economic Evaluation of Projects in the Electricity Supply Industry. Institution of Engineering and Technology. Online version available at: http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=2990&VerticalID=0 • KIRSCHEN, D. S.; STRBAC, G. Fundamentals of Power System Economics, John Wiley & Sons, Ltd., Chichester, 2004. • LEONARDO MAUGERI. The Age of Oil. Praeger, Westport, London, 2006 • M. SHAHIDEHPOUR; Z. LI. Electricity Market Economics, John Wiley & Sons, New York, 2005 • Mechanical Engineer´s Handbook - Academic Press Series in Engineering • OLIVEIRA FILHO, D. Electric energy system planning and the second principle of thermodynamics. Quebec: McGill University, Montreal, 1995. 199p. Ph.D. Thesis • OTTINGER RL, WOOLEY DR, ROBINSON NA, HODAS DR, BABB SE. Environmental costs of electricity. New York: Pace University Center for Environmental Legal Studies/Ocean Publications, 1991. • PELLEGRINI, L.A.; Soave, G.; Gamba, S.; Langè, S., 2011. Economic analysis of a combined energy–methanol production plant. Applied Energy, 88(12), 4891-4897 • REIS, L.B., 2003. Geração de energia elétrica: tecnologia, inserção ambiental, planejamento, operação e análise de viabilidade. Barueri: Manole. • RICO, J.A.P. and SAUER, I.L. (2015). A review of Brazilian biodiesel experiences, Renewable and Sustainable Energy Reviews, vol. 45, pp. 513–529. • RICO, J.A.P.; MERCEDES, S. S. P.; SAUER, I.L. (2010). Genesis and consolidation of the Brazilian bioethanol: A review of policies and incentive mechanisms, Renewable and Sustainable Energy Reviews, vol. 14, pp. 1874–1887. • RICOSTI, J.F.C. and SAUER, I.L. (2013). An assessment of wind power prospects in the Brazilian hydrothermal system, Renewable and Sustainable Energy Reviews, vol. 19, pp. 742–753 . • RODRIGUES, L. A. and SAUER, I. L. (2015). Exploratory assessment of the economic gains of a pre-salt oil field in Brazil, Energy Policy, vol. 87, pp. 486–495. • ROTHWELL, G.; GÓMEZ, T., 2003. Electricity economics: regulation and deregulation. IEEE Press Series on Power Engineering • SCHREIBER, Gerard Paul. Usinas Hidrelétricas. São Paulo: Edgar Blücher, 1978. 238 p • STEVENSON, W., 1984. Elements of Power Systems Analysis. MacGraw Hill. • TALAVERA, D.L.; MUÑOZ-CERÓN, E.; DE LA CASA, J.; ORTEGA, M.J.; ALMONACID, G., 2011. Energy and economic analysis for large-scale integration of small photovoltaic systems in buildings: The case of a public location in Southern Spain. Renewable and Sustainable Energy Reviews, 15(9), 4310-4319 . • TRIPATHY, S.C.; LAKSHMI, S.R.; BALASUBRAMANIAN, R. Production costing and economic analysis of power systems containing wind energy conversion systems. Energy Conversion and Management, Volume 39, Issue 7, May 1998, Pages 649-659 • ZHI-GAO SUN, 2008. Energy efficiency and economic feasibility analysis of cogeneration system driven by gas engine. Energy and Buildings, 40(2), 126-130 • WANG, Q.; DeLUCHI, M.A., 1992. Impacts of electric vehicles on primary energy consumption and petroleum displacement. Energy: An International Journal, Great Britain, 17(4), 351-366.

Bibliography:

• ABECASSIS, F. E N. CABRAL. (1991). Análise Económica e Financeira de Projectos. Serviço de Educação. Fundação Calouste Gulbenkian. Lisboa • ALLEN, D., 1991. Economic evaluation of projects. Warwickshire: Institution of Chemical Engineers. • BLACK; VEATCH. Power Plant Engineering. Chapman Hall, New York, NY, 1996 • BREALY, R.A.; MYERS, S.C. Principles of Corporate Finance. McGraw-Hill, 2006. • BUARQUE, Cristovam. Avaliação Econômica de Projetos: Uma apresentação Didática. Rio de Janeiro: Campus, 1984. • CELIK, A.N., 2002. Optimisation and techno-economic analysis of autonomous photovoltaic–wind hybrid energy systems in comparison to single photovoltaic and wind systems. Energy Conversion and Management, 43(18), 2453- 2468. • DUSONCHET, L.; TELARETTI, E., 2010. Economic analysis of different supporting policies for the production of electrical energy by solar photovoltaics in eastern European Union countries. Energy Policy, 38(8), 4011-4020. • EHRLICH, P. J. (2009). Engenharia Econômica. São Paulo: Atlas. • FILHA, D.C.M; CASTRO, M.P.S. Project Finance: estruturação de financiamentos. Revista do BNDES . v.7, n.14, p.107-124, dez.2000. • FINNERTY, J.D. Project Finance: engenharia financeira baseada em ativos. São Paulo: Ed. Quality, 1998. • HIRSCHFELD, H. (2007). Engenharia econômica e análise de custos. São Paulo: Atlas. • INTERNATIONAL ENERGY AGENCY. Energy Balances of OECD Countries. Several editions, Paris • INTERNATIONAL ENERGY AGENCY. Energy Balances of Non-OECD Countries, 2006 edition, Paris • JOSKOW, P.L., PARSONS, J.E. The economic future of nuclear power. Daedalus 138.4 (2009): 45-59. • REDDING, J. R.; MACGREGOR, P. R., 1993. Advanced Nuclear Plants: Meeting the Economic Challenge, presented at the American Nuclear Society 1993 Winter Meeting, San Francisco, California. • KALOGIROU, S., 1996. Economic analysis of solar energy systems using spreadsheets. Renewable Energy, 9(1-4), 1303-1307. • KAPLAN, P., 2008. Power plants: characteristics and costs. Washington: Congressional Research Service. • KHATIB, H., 2003. Economic Evaluation of Projects in the Electricity Supply Industry. Institution of Engineering and Technology. Online version available at: http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=2990&VerticalID=0 • KIRSCHEN, D. S.; STRBAC, G. Fundamentals of Power System Economics, John Wiley & Sons, Ltd., Chichester, 2004. • LEONARDO MAUGERI. The Age of Oil. Praeger, Westport, London, 2006 • M. SHAHIDEHPOUR; Z. LI. Electricity Market Economics, John Wiley & Sons, New York, 2005 • Mechanical Engineer´s Handbook - Academic Press Series in Engineering • OLIVEIRA FILHO, D. Electric energy system planning and the second principle of thermodynamics. Quebec: McGill University, Montreal, 1995. 199p. Ph.D. Thesis • OTTINGER RL, WOOLEY DR, ROBINSON NA, HODAS DR, BABB SE. Environmental costs of electricity. New York: Pace University Center for Environmental Legal Studies/Ocean Publications, 1991. • PELLEGRINI, L.A.; Soave, G.; Gamba, S.; Langè, S., 2011. Economic analysis of a combined energy–methanol production plant. Applied Energy, 88(12), 4891-4897 • REIS, L.B., 2003. Geração de energia elétrica: tecnologia, inserção ambiental, planejamento, operação e análise de viabilidade. Barueri: Manole. • RICO, J.A.P. and SAUER, I.L. (2015). A review of Brazilian biodiesel experiences, Renewable and Sustainable Energy Reviews, vol. 45, pp. 513–529. • RICO, J.A.P.; MERCEDES, S. S. P.; SAUER, I.L. (2010). Genesis and consolidation of the Brazilian bioethanol: A review of policies and incentive mechanisms, Renewable and Sustainable Energy Reviews, vol. 14, pp. 1874–1887. • RICOSTI, J.F.C. and SAUER, I.L. (2013). An assessment of wind power prospects in the Brazilian hydrothermal system, Renewable and Sustainable Energy Reviews, vol. 19, pp. 742–753 . • RODRIGUES, L. A. and SAUER, I. L. (2015). Exploratory assessment of the economic gains of a pre-salt oil field in Brazil, Energy Policy, vol. 87, pp. 486–495. • ROTHWELL, G.; GÓMEZ, T., 2003. Electricity economics: regulation and deregulation. IEEE Press Series on Power Engineering • SCHREIBER, Gerard Paul. Usinas Hidrelétricas. São Paulo: Edgar Blücher, 1978. 238 p • STEVENSON, W., 1984. Elements of Power Systems Analysis. MacGraw Hill. • TALAVERA, D.L.; MUÑOZ-CERÓN, E.; DE LA CASA, J.; ORTEGA, M.J.; ALMONACID, G., 2011. Energy and economic analysis for large-scale integration of small photovoltaic systems in buildings: The case of a public location in Southern Spain. Renewable and Sustainable Energy Reviews, 15(9), 4310-4319 . • TRIPATHY, S.C.; LAKSHMI, S.R.; BALASUBRAMANIAN, R. Production costing and economic analysis of power systems containing wind energy conversion systems. Energy Conversion and Management, Volume 39, Issue 7, May 1998, Pages 649-659 • ZHI-GAO SUN, 2008. Energy efficiency and economic feasibility analysis of cogeneration system driven by gas engine. Energy and Buildings, 40(2), 126-130 • WANG, Q.; DeLUCHI, M.A., 1992. Impacts of electric vehicles on primary energy consumption and petroleum displacement. Energy: An International Journal, Great Britain, 17(4), 351-366.

Tipo de oferecimento da disciplina:

Presencial

Class type:

Presencial