Disciplina Discipline SEP5849
Manufatura Híbrida

Hybrid Manufacturing

Área de Concentração: 18156

Concentration area: 18156

Criação: 14/10/2019

Creation: 14/10/2019

Ativação: 14/10/2019

Activation: 14/10/2019

Nr. de Créditos: 2

Credits: 2

Carga Horária:

Workload:

Teórica

(por semana)

Theory

(weekly)

Prática

(por semana)

Practice

(weekly)

Estudos

(por semana)

Study

(weekly)

Duração Duration Total Total
9 6 15 1 semanas 1 weeks 30 horas 30 hours

Docente Responsável:

Professor:

Reginaldo Teixeira Coelho

Objetivos:

Apresentar ao aluno as técnicas de manufatura hibrida usando as tecnologias aditivas, bem como o planejamento de sequência de fabricação usando essas tecnologias.

Objectives:

Introduce the student to hybrid manufacturing techniques using additive technologies as well as manufacturing sequence planning using these technologies.

Justificativa:

A descoberta de novos processos de fabricação, com novos materiais e aplicações inovadoras tem apresentado desafios cada vez maiores. O desenvolvimento industrial depende diretamente da habilidade de se transpor os constantes desafios que surgem na sociedade moderna. Para isso as indústrias têm cada vez mais aumentado o volume de pesquisas bem como investido na aplicação de recursos humanos capacitados. Os processos de fabricação de Manufatura Hibrida estão surgindo como uma alternativa mais eficaz e eficiente em comparação aos processos de fabricação tradicionais. Essa tecnologia recente e inovadora consiste em se obter peças metálicas com sua forma final muito próxima das dimensões finais do produto (net-shape) pela adição de material em camadas. Desta forma, pode-se baratear os custos com insumos, mão de obra e energia dispendida. Esta disciplina apresentará tais processos aos alunos e os capacitará a utilizá-los dentro das sequencias de fabricação de componentes para a indústria.

Rationale:

The discovery of new manufacturing processes with new materials and innovative applications has presented increasing challenges. Industrial development depends directly on the ability to overcome the constant challenges that arise in modern society. To this end, industries have increasingly increased research volume and invested in the application of skilled human resources. Hybrid Manufacturing processes are emerging as a more effective and efficient alternative to traditional manufacturing processes. This recent and innovative technology consists in obtaining metal parts with their final shape very close to the net-shape by adding layered material. This way, you can lower your input, labor and energy costs. This course will introduce such processes to students and enable them to use them within the manufacturing component sequence for industry.

Conteúdo:

1 – Classificação dos processos de Manufatura Hibrida. 2 – Processos a base de Pós 3 – Processos a base de Líquidos 4 – Processos a base de Sólidos 5 – Máquinas para Manufatura Hibrida 6 – Manufatura Hibrida para Materiais Metálicos 7 – Principais aplicações e oportunidades

Content:

1 - Classification of Hybrid Manufacturing processes. 2 - Post Processes 3 - Liquid based processes 4 - Processes based on Solids 5 - Hybrid Manufacturing Machines 6 - Hybrid Manufacturing for Metallic Materials 7 - Key Applications and Opportunities

Forma de Avaliação:

Provas e desempenho em seminários, apresentações e participações do aluno durante o curso.

Type of Assessment:

Tests and performance in seminars, presentations and student participation during the course.

Bibliografia:

Agarwala, M., Bourell, D., Beaman, J., Marcus, H. and Barlow, J., (1995), Direct selective laser sintering of metals, Rapid Prototyping Journal, Vo 1, n1, p. 26–36 Borowy, K.-H., Kramer, K.-H., (1995), On the properties of a new titanium alloy (TiAl5Fe2.5) as implant material. In: Titanium’84 Science and Technology, vol. 2. Munich, Deutsche Gesellschaft Für Metallkunde EV, p1381-6 DeGarmo, E.P., Black, J.T., Kosher, R.A., (1997), Materials and Processes in Manufacturing, 8th Edition, Prentice-Hall Inc., printed in the United States of America. Facchini, L., Magalini, E., Robotti, P., Molinari, A., Höges, S., Wissenbach, K., (2010). Ductility of a Ti-6Al-4V alloy produced by selective laser melting of pre-alloyed powders. Rapid Prototyping J. 16, 450 – 459. Geetha, M., Singh, A.K., Muraleedharan, K., Gogia, A.K., Asokamani, R., (2001), Effect of thermomechanical processing on microstructure of a Ti–13Nb–13Zr alloy, Journal of Alloys and Compounds 329, p264–271. Hollander, D.R., Von Walter, M., Wirtz, T., Sellei, R., Schmidt-Rohlfing, B., Paar, O., Erli, H.J., (2006). Structural, mechanical and in vitro characterization of individually structured Ti–6Al–4V produced by direct laser forming. Biomaterials 27, 955-963. King D., Tansey, T., (2003), Rapid tooling: selective laser sintering injection tooling, Journal of Materials Processing Technology 132, pp 42–48. Kruth, J. P. (1991), Material Incress Manufacturing by Rapid Prototyping Techniques, Annals of CIRP, vol 40/2, p603-614. Murr, L.E., Quinones, S.A., Gaytan, S.M., Lopes, M.I., Rodela, A., Martinez, E.Y., Hernandez, D.H., Martinez, E., Medina, F., Wicker, R.B., (2009). Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing for biomedical applications. J. Mech. Behav. Biomed. Mater. 2, 20-32. Murr, L.E., Gaytan, S.M., Medina, F., Lopez, H., Martinez, E., Machado, B.I., Hernanez, D.H., Martinez, L., Lopez, M.I., Wicker, R.B., Bracke, J., (2010). Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philosophical Transactions of the Royal Society A 368, 1999–2032. Nau, B., Roderburg. A., Klocke, F., (2011), Ramp-up of hybrid manufacturing technologies, CIRP Journal of Manufacturing Science and Technology 4 (2011) 313–316 Sachs, E., Cima, M., Cornie, J. (1990), Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model, Annals of the ClRP, vol 39/1, p201-204 Scholz, S.G., Griffiths, C.A., Dimov, S.S., Brousseau, E.B., Lalev, G., Petkov, P. (2011), Manufacturing routes for replicating micro and nano surface structures, with bio-mimetic applications, CIRP Journal of Manufacturing Science and Technology 4 pp313–316 Schleifenbaum, H., Meiners, W., Wissenbach, K., Hinke, C., (2010), Individualized production by means of high power Selective Laser Melting, CIRP Journal of Manufacturing Science and Technology 2 pp 161–169. Simchi, A., Petzoldt, F., Pohl, H., (2003), On the development of direct metal laser sintering for rapid tooling, Journal of Materials Processing Technology 141, pp319–328. Traini, T., Mangano, C., Sammons, R.L., F., Manganod, A., Macchi, Piattelli, A., (2008), Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants, Dental Materials 2 4, pp 1525–1533 Tang, Y., Loh, H.T., Wong, Y.S., Fuh, J.Y.H., Lu, L., Wang, X. (2003), Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts, Journal of Materials Processing Technology 140, pp368–372 Vrancken, B., Thijs, L., Kruth, J.P., Van Humbeeck, J., (2012), Heat treatment of Ti-6Al-4V produced by selective laser melting: microstruture and mechanical properties. J. Alloy. Compd. 541, 177-185.

Bibliography:

Agarwala, M., Bourell, D., Beaman, J., Marcus, H. and Barlow, J., (1995), Direct selective laser sintering of metals, Rapid Prototyping Journal, Vo 1, n1, p. 26–36 Borowy, K.-H., Kramer, K.-H., (1995), On the properties of a new titanium alloy (TiAl5Fe2.5) as implant material. In: Titanium’84 Science and Technology, vol. 2. Munich, Deutsche Gesellschaft Für Metallkunde EV, p1381-6 DeGarmo, E.P., Black, J.T., Kosher, R.A., (1997), Materials and Processes in Manufacturing, 8th Edition, Prentice-Hall Inc., printed in the United States of America. Facchini, L., Magalini, E., Robotti, P., Molinari, A., Höges, S., Wissenbach, K., (2010). Ductility of a Ti-6Al-4V alloy produced by selective laser melting of pre-alloyed powders. Rapid Prototyping J. 16, 450 – 459. Geetha, M., Singh, A.K., Muraleedharan, K., Gogia, A.K., Asokamani, R., (2001), Effect of thermomechanical processing on microstructure of a Ti–13Nb–13Zr alloy, Journal of Alloys and Compounds 329, p264–271. Hollander, D.R., Von Walter, M., Wirtz, T., Sellei, R., Schmidt-Rohlfing, B., Paar, O., Erli, H.J., (2006). Structural, mechanical and in vitro characterization of individually structured Ti–6Al–4V produced by direct laser forming. Biomaterials 27, 955-963. King D., Tansey, T., (2003), Rapid tooling: selective laser sintering injection tooling, Journal of Materials Processing Technology 132, pp 42–48. Kruth, J. P. (1991), Material Incress Manufacturing by Rapid Prototyping Techniques, Annals of CIRP, vol 40/2, p603-614. Murr, L.E., Quinones, S.A., Gaytan, S.M., Lopes, M.I., Rodela, A., Martinez, E.Y., Hernandez, D.H., Martinez, E., Medina, F., Wicker, R.B., (2009). Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing for biomedical applications. J. Mech. Behav. Biomed. Mater. 2, 20-32. Murr, L.E., Gaytan, S.M., Medina, F., Lopez, H., Martinez, E., Machado, B.I., Hernanez, D.H., Martinez, L., Lopez, M.I., Wicker, R.B., Bracke, J., (2010). Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philosophical Transactions of the Royal Society A 368, 1999–2032. Nau, B., Roderburg. A., Klocke, F., (2011), Ramp-up of hybrid manufacturing technologies, CIRP Journal of Manufacturing Science and Technology 4 (2011) 313–316 Sachs, E., Cima, M., Cornie, J. (1990), Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model, Annals of the ClRP, vol 39/1, p201-204 Scholz, S.G., Griffiths, C.A., Dimov, S.S., Brousseau, E.B., Lalev, G., Petkov, P. (2011), Manufacturing routes for replicating micro and nano surface structures, with bio-mimetic applications, CIRP Journal of Manufacturing Science and Technology 4 pp313–316 Schleifenbaum, H., Meiners, W., Wissenbach, K., Hinke, C., (2010), Individualized production by means of high power Selective Laser Melting, CIRP Journal of Manufacturing Science and Technology 2 pp 161–169. Simchi, A., Petzoldt, F., Pohl, H., (2003), On the development of direct metal laser sintering for rapid tooling, Journal of Materials Processing Technology 141, pp319–328. Traini, T., Mangano, C., Sammons, R.L., F., Manganod, A., Macchi, Piattelli, A., (2008), Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants, Dental Materials 2 4, pp 1525–1533 Tang, Y., Loh, H.T., Wong, Y.S., Fuh, J.Y.H., Lu, L., Wang, X. (2003), Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts, Journal of Materials Processing Technology 140, pp368–372 Vrancken, B., Thijs, L., Kruth, J.P., Van Humbeeck, J., (2012), Heat treatment of Ti-6Al-4V produced by selective laser melting: microstruture and mechanical properties. J. Alloy. Compd. 541, 177-185.

Tipo de oferecimento da disciplina:

Presencial

Class type:

Presencial