Disciplina Discipline VCI5791
Biologia Celular Voltada à Bioengenharia de Tecidos

Cellular Biology focused on Tissue Bioengineering

Área de Concentração: 10132

Concentration area: 10132

Criação: 13/09/2022

Creation: 13/09/2022

Ativação: 13/09/2022

Activation: 13/09/2022

Nr. de Créditos: 2

Credits: 2

Carga Horária:

Workload:

Teórica

(por semana)

Theory

(weekly)

Prática

(por semana)

Practice

(weekly)

Estudos

(por semana)

Study

(weekly)

Duração Duration Total Total
3 2 1 5 semanas 5 weeks 30 horas 30 hours

Docentes Responsáveis:

Professors:

Maria Angélica Miglino

Ana Claudia Oliveira Carreira Nishiyama

Rodrigo da Silva Nunes Barreto

Rogério Leone Buchaim

Objetivos:

Discutir sobre o crescente campo de bioengenharia de tecidos dentro da medicina regenerativa, abordando fontes alternativas de biomateriais, bem como sua descelularização, validação, recelularização e interação matriz extracelular-células.

Objectives:

Discuss the growing field of tissue bioengineering within regenerative medicine, addressing alternative sources of biomaterials, as well as its decellularization, validation, recellularization and cellular and extratracellular matrix interaction.

Justificativa:

A bioengenharia de tecidos vem contribuindo muito com a medicina regenerativa, visando suprir a demanda por enxertos ou transplantes parciais. Além disso, fontes alternativas de biomateriais naturais produzidos por meio da descelularização de tecidos vem amplamente sendo utilizada, entretanto permanece em constante crescimento. Portanto o entendimento dos processos de produção, validação e recelularização, bem como a interação matriz extracelular-célula-hospedeiro, destes biomateriais é de grande importância, principalmente quando se aborda fontes alternativas e atém mesmo xenólogas.

Rationale:

Tissue bioengineering has contributed hugely to regenerative medicine, aiming to meet the demand for grafts or partial transplants. In addition, alternative sources of natural biomaterials produced through tissue decellularization have been widely used, and the field is constantly growing. Therefore, understanding this processes of production, validation and recellularization, as well as the extracellular-cell-host matrix interaction, of these biomaterials is of great importance, especially when addressing alternative sources and even xenologists.

Conteúdo:

Esta disciplina abordará os seguintes tópicos: 1- Princípios gerais da bioengenharia de tecidos 2- Biomateriais sintéticos e biológicos 3- Descelularização para produção de scaffolds 4- Células trono na recelularização de biomateriais 5- Interações célula-célula e célula-matriz extracelular 6- Aplicação da bioengenharia de tecidos para diversos sistemas

Content:

This course will cover the following topics: 1- General principles of tissue bioengineering 2- Synthetic and biological biomaterials 3- Decellularization for scaffolds production 4- Throne cells in the recellularization of biomaterials 5- Cell-cell and extracellular matrix cell interactions 6- Application of tissue bioengineering for various systems

Forma de Avaliação:

Os critérios de avaliação serão baseados na participação em aula teórica (25%), nas avaliações semanais (25%), apresentação de seminários (10%) e apresentação... (INCOMPLETO), cuja nota final (0-10), obtida por média aritmética simples, determinará o conceito final (A,B,C,R), considerando os respectivos intervalos: 10-9 (A); 8-7 (B); 6-5 (C); 4-0 (R).

Type of Assessment:

The evaluation criteria will be based on participation in theoretical classes (25%), weekly evaluations (25%), presentation of seminars (10%) and presentation... (INCOMPLETE), whose final score (0-10), obtained by simple arithmetic mean, will determine the final concept (A,B,C,R), considering the respective intervals: 10-9 (A); 8-7 (B); 6-5 (C); 4-0 (R).

Bibliografia:

1. Alberts B, et al. Molecular biology of the cell. New York: Ed. Garland Science, 2008. 1601 p. 2. Badylak SF. 2007, The extracellular matrix as a biologic scaffold material, Biomaterials, 28: 3587–3593. 3. Keane TJ, Swinehart IT, Badylak SF. 2015, Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance, Methods, 84: 25–34. 4. Ratner B, et al. Biomaterials Science: an introduction to materials in medicine. 3rd edition. Ed. Elsevier, 2013. 5. Arenas-Herrera JE, Ko IK, Atala A, Yoo JJ. Decellularization for whole organ bioengineering. Biomed Mater. 2013;8(1):014106. 6. Atala A. Regenerative medicine strategies. J Pediatr Surg. 2012;47(1):17-28. 7. Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci Transl Med. 2012;4(160):160-12 8. Lee SJ, Atala A. Scaffold technologies for controlling cell behavior in tissue engineering. Biomed Mater. Biomed Mater. 2013;8(1):010201 9. Mhashilkar AM, Atala A. Advent and maturation of regenerative medicine. Curr Stem Cell Res Ther. 2012;7(6):430-45. 10. Murphy SV, Atala A. Organ engineering – combining stem cells, biomaterials and bioreactors to produce bioengineered organs for transplantation. Bioessays. 2013;35(30:163-72. 11. Vacanti JP. Tissue engineering and the road to whole organs. Br J Surg. 2012;99(4):451-3. 12. Tewary, M., Shakiba, N., & Zandstra, P. W. (2018). Stem cell bioengineering: building from stem cell biology. Nature Reviews Genetics, 19(10), 595-614. 13. Sharma, P., Kumar, P., Sharma, R., Bhatt, V. D., & Dhot, P. S. (2019). Tissue engineering; current status & futuristic scope. Journal of medicine and life, 12(3), 225. 14. Arzt, M., Jenkins, A., & Sharma, A. (2022). Stem Cell Biology and Tissue Engineering in Space. In‐Space Manufacturing and Resources: Earth and Planetary Exploration Applications, 89-108. 15. Torras, N., García-Díaz, M., Fernández-Majada, V., & Martínez, E. (2018). Mimicking epithelial tissues in three-dimensional cell culture models. Frontiers in bioengineering and biotechnology, 6, 197. 16. Madl, C. M., Heilshorn, S. C., & Blau, H. M. (2018). Bioengineering strategies to accelerate stem cell therapeutics. Nature, 557(7705), 335-342. 17. Saglam-Metiner, P., Gulce-Iz, S., & Biray-Avci, C. (2019). Bioengineering-inspired three-dimensional culture systems: Organoids to create tumor microenvironment. Gene, 686, 203-212.

Bibliography:

1. Alberts B, et al. Molecular biology of the cell. New York: Ed. Garland Science, 2008. 1601 p. 2. Badylak SF. 2007, The extracellular matrix as a biologic scaffold material, Biomaterials, 28: 3587–3593. 3. Keane TJ, Swinehart IT, Badylak SF. 2015, Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance, Methods, 84: 25–34. 4. Ratner B, et al. Biomaterials Science: an introduction to materials in medicine. 3rd edition. Ed. Elsevier, 2013. 5. Arenas-Herrera JE, Ko IK, Atala A, Yoo JJ. Decellularization for whole organ bioengineering. Biomed Mater. 2013;8(1):014106. 6. Atala A. Regenerative medicine strategies. J Pediatr Surg. 2012;47(1):17-28. 7. Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci Transl Med. 2012;4(160):160-12 8. Lee SJ, Atala A. Scaffold technologies for controlling cell behavior in tissue engineering. Biomed Mater. Biomed Mater. 2013;8(1):010201 9. Mhashilkar AM, Atala A. Advent and maturation of regenerative medicine. Curr Stem Cell Res Ther. 2012;7(6):430-45. 10. Murphy SV, Atala A. Organ engineering – combining stem cells, biomaterials and bioreactors to produce bioengineered organs for transplantation. Bioessays. 2013;35(30:163-72. 11. Vacanti JP. Tissue engineering and the road to whole organs. Br J Surg. 2012;99(4):451-3. 12. Tewary, M., Shakiba, N., & Zandstra, P. W. (2018). Stem cell bioengineering: building from stem cell biology. Nature Reviews Genetics, 19(10), 595-614. 13. Sharma, P., Kumar, P., Sharma, R., Bhatt, V. D., & Dhot, P. S. (2019). Tissue engineering; current status & futuristic scope. Journal of medicine and life, 12(3), 225. 14. Arzt, M., Jenkins, A., & Sharma, A. (2022). Stem Cell Biology and Tissue Engineering in Space. In‐Space Manufacturing and Resources: Earth and Planetary Exploration Applications, 89-108. 15. Torras, N., García-Díaz, M., Fernández-Majada, V., & Martínez, E. (2018). Mimicking epithelial tissues in three-dimensional cell culture models. Frontiers in bioengineering and biotechnology, 6, 197. 16. Madl, C. M., Heilshorn, S. C., & Blau, H. M. (2018). Bioengineering strategies to accelerate stem cell therapeutics. Nature, 557(7705), 335-342. 17. Saglam-Metiner, P., Gulce-Iz, S., & Biray-Avci, C. (2019). Bioengineering-inspired three-dimensional culture systems: Organoids to create tumor microenvironment. Gene, 686, 203-212.

Tipo de oferecimento da disciplina:

Presencial

Class type:

Presencial