Disciplina Discipline VCI5800
Scaffolds Biológicos para Medicina Regenerativa: Avanços e Perspectivas

Biological Scaffolds for Regenerative Medicine: Advances and Perspectives

Área de Concentração: 10132

Concentration area: 10132

Criação: 22/06/2022

Creation: 22/06/2022

Ativação: 22/06/2022

Activation: 22/06/2022

Nr. de Créditos: 3

Credits: 3

Carga Horária:

Workload:

Teórica

(por semana)

Theory

(weekly)

Prática

(por semana)

Practice

(weekly)

Estudos

(por semana)

Study

(weekly)

Duração Duration Total Total
8 4 3 3 semanas 3 weeks 45 horas 45 hours

Docentes Responsáveis:

Professors:

Maria Angélica Miglino

Ana Claudia Oliveira Carreira Nishiyama

Rodrigo da Silva Nunes Barreto

Objetivos:

A presente disciplina visa à divulgação e troca de experiências na área de Scaffolds Biológicos para Medicina Regenerativa: Avanços e Perspectivas, por meio de um ciclo de palestras com vários pesquisadores renomados na área de bioengenharia de tecidos e medicina regenerativa, buscando disseminação do conhecimento sobre este tema de extrema relevância aos alunos de pós-graduação.

Objectives:

This course aims to promote the knowledge and experience exchanges on the field of biological scaffolds for regenerative medicine, through a series of talks by renowned researches on the area of tissue bioengineering and regenerative medicine, contributing to the dissemination of this relevant subject to our graduate students.

Justificativa:

A engenharia de tecidos é uma área interdisciplinar da medicina regenerativa que visa restaurar (recriar), conservar ou melhorar o tecido danificado através da combinação de células com scaffolds, e cujo objetivo final é fornecer substituição parcial ou total de órgãos e tecidos que apresentem funções perdidas. As propriedades dos scaffolds desempenham um papel importante no controle da resposta e diferenciação celular, e na regeneração do tecido funcional e devem ter características adequadas de resistência mecânica, biocompatibilidade, e arquitetura de apoio para o desenvolvimento da engenharia de tecidos bem-sucedida. Transplantes de órgãos e tecidos implicam em vários fatores que comprometem o processo de doação dos órgãos, tais como, o risco de cirurgia (doadores vivos), a viabilidade dos órgãos e de tecidos, problemas imunogênicos, imunossupressão, entre outros. A utilização de scaffolds é uma alternativa terapêutica real que pode levar a uma diminuição das indicações para realizações de transplantes, ou até reduzir drasticamente a necessidade de doadores de órgãos.

Rationale:

Tissue engineering is an interdisciplinary area of the regenerative medicine that aims to recovery, to conserve or to improve a damaged tissue through the combination of cells and scaffolds. Scaffolds have an important role to control the cellular response and differentiation, as well as the regeneration of the tissue function; therefore, they have to present proper characteristics as mechanical resistance, biocompatibility, and suitable support architecture. Organs and tissues transplant depend on various factors that may compromise the process of organ donation, as the surgery risk (live donors), the organ or tissue viability, immunogenic problems, immunosuppression, etc. Thus, the use of scaffolds is a solid therapeutic alternative that may contribute to diminish the number of transplant procedures or even drastically reduce the necessity of organ donors.

Conteúdo:

1. Métodos de deceluralização. 2. Scaffolds sintéticos X biológicos. 3. Biorreatores. 4. Recelularização de scaffolds. 5. Transplante e engenharia de órgãos. 6. Propriedade micromecânicas da matriz extracelular. 7. Análise proteica da MEC pela espectrometria de massa 8. Mecânica vascular de scaffold pulmonar. 9. Deceluralização da placenta canina 10. Deceluralização da placenta bovina 11. Matriz extracelular da placenta. 12. Evolução da matriz extracelular da placenta.

Content:

1. Decellularization Methods. 2. Biological x Synthetic Scaffolds. 3. Bioreactors. 4. Scaffolds Recellularization. 5. Organ engineering transplantation. 6. Micromechanical Properties of the EMC. 7. Protein analysis by mass spectrometry in EMC 8. Vascular mechanics of lung scaffold. 9. Decellularization of canine placenta 10. Decellularization of bovine placenta 11. Placental EMC. 12. Evolution EMC placental.

Forma de Avaliação:

A avaliação basear-se-á na participação nas aulas teóricas (50%) e nas avaliações dos seminários e discussões (50%), cuja nota (0-10), com pesos iguais, obtida por média aritmética simples, determinará o conceito final (A,B,C,R), considerando os respectivos intervalos: 10-9 (A); 8-7 (B); 6-5 (C); 4-0 (R).

Type of Assessment:

The students grades will be given based on their participation in the lectures (50%) and seminars and discussions (50%), whose grade (0-10), with equal weights, obtained by simple arithmetic mean, will determine the final concept (A,B,C,R), considering the respective intervals: 10-9 (A); 8-7 (B); 6-5 (H); 4-0 (R).

Bibliografia:

ATALA, A.; ALLICKSON J. Translational Regenerative Medicine. Washington (DC): National Academies Press (US); 2014. 586 p. FISHER, et al. Tissue Engineering. 1. Ed. CRC Press. 2019. 596 p. Alberts B, et al. Molecular biology of the cell. New York: Ed. Garland Science, 2008. 1601 p. BARRETO, et al. Decellularized bovine cotyledons may serve as biological scaffolds with preserved vascular arrangement. Journal of Tissue Engineering and Regenerative Medicine, v. 12, p. e1880-e1888, 2018. BARRETO, et al. ECM proteins involved in cell migration and vessel formation compromise bovine cloned placentation. THERIOGENOLOGY, 2022. BARRETO, et al. Mouse placental scaffolds: a three-dimensional environment model for recellularization. JOURNAL OF TISSUE ENGINEERING, v. 10, p. 204173141986796, 2019. BATISTA et al . Recellularized rat testis scaffolds with embryoid bodies cells: a promising approach for tissue engineering. Systems Biology in Reproductive Medicine, v. 68, p. 44-54, 2022. CARVALHO, et al. Comparison between placental and skeletal muscle ECM: implantation. CONNECTIVE TISSUE RESEARCH, v. 62, p. 1-14, 2020. EVANGELISTA-LEITE, et al . Protective effects of extracellular matrix derived hydrogels in idiopathic pulmonary fibrosis. Tissue Engineering. Part B, Reviews, v. 1, p. 1, 2021. FRATINI, et al. Canine Placenta Recellularized Using Yolk Sac Cells with Vascular Endothelial Growth Factor. BIORESEARCH OPEN ACCESS, v. 7, p. 101-106, 2018. HILL, et al. Placental scaffolds have the ability to support adipose-derived cells differentiation into osteogenic and chondrogenic lineages. Journal of Tissue Engineering and Regenerative Medicine, v. X, p. X, 2020. MATIAS, et al . Proteomic profile of extracellular matrix from native and decellularized chorionic canine placenta. Journal of Proteomics, v. 256, p. 104497, 2022. MATIAS, et al. In vivo biocompatibility analysis of the recellularized canine tracheal scaffolds with canine epithelial and endothelial progenitor cells. Bioengineered, v. 13, p. 3551-3565, 2022. MATIAS, et al. Ionic detergent under pressure-vacuum as an innovative strategy to generate canine tracheal scaffold for organ engineering. CELLS TISSUES ORGANS, v. 1, p. 1, 2022. MATIAS, et al. Optimization of Canine Placenta Decellularization: An Alternative Source of Biological Scaffolds for Regenerative Medicine. CELLS TISSUES ORGANS, v. 1, p. 1-9, 2018. MATIAS, et al. Recellularization Of Canine Placental Extracellular Matrix: Mesenchymal Stem Cells Applied To Tissue Bioengineering. HSOA Journal of Stem Cells Research, Development & Therapy, v. 6, p. 1-6, 2020. SILVA, et al. Bacterial Cellulose and ECM Hydrogels: An Innovative Approach for Cardiovascular Regenerative Medicine. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v. 23, p. 3955, 2022. SILVA, et al. Biological Characterization of Polymeric Matrix and Graphene Oxide Biocomposites Filaments for Biomedical Implant Applications: A Preliminary Report. Polymers, v. 13, p. 3382, 2021. YOSHINAGA, et al. Testicular subcutaneous allografting followed by immunosuppressive treatment promotes maintenance of spermatogonial cells in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY, v. 112, p. 108-115, 2021.

Bibliography:

ATALA, A.; ALLICKSON J. Translational Regenerative Medicine. Washington (DC): National Academies Press (US); 2014. 586 p. FISHER, et al. Tissue Engineering. 1. Ed. CRC Press. 2019. 596 p. Alberts B, et al. Molecular biology of the cell. New York: Ed. Garland Science, 2008. 1601 p. BARRETO, et al. Decellularized bovine cotyledons may serve as biological scaffolds with preserved vascular arrangement. Journal of Tissue Engineering and Regenerative Medicine, v. 12, p. e1880-e1888, 2018. BARRETO, et al. ECM proteins involved in cell migration and vessel formation compromise bovine cloned placentation. THERIOGENOLOGY, 2022. BARRETO, et al. Mouse placental scaffolds: a three-dimensional environment model for recellularization. JOURNAL OF TISSUE ENGINEERING, v. 10, p. 204173141986796, 2019. BATISTA et al . Recellularized rat testis scaffolds with embryoid bodies cells: a promising approach for tissue engineering. Systems Biology in Reproductive Medicine, v. 68, p. 44-54, 2022. CARVALHO, et al. Comparison between placental and skeletal muscle ECM: implantation. CONNECTIVE TISSUE RESEARCH, v. 62, p. 1-14, 2020. EVANGELISTA-LEITE, et al . Protective effects of extracellular matrix derived hydrogels in idiopathic pulmonary fibrosis. Tissue Engineering. Part B, Reviews, v. 1, p. 1, 2021. FRATINI, et al. Canine Placenta Recellularized Using Yolk Sac Cells with Vascular Endothelial Growth Factor. BIORESEARCH OPEN ACCESS, v. 7, p. 101-106, 2018. HILL, et al. Placental scaffolds have the ability to support adipose-derived cells differentiation into osteogenic and chondrogenic lineages. Journal of Tissue Engineering and Regenerative Medicine, v. X, p. X, 2020. MATIAS, et al . Proteomic profile of extracellular matrix from native and decellularized chorionic canine placenta. Journal of Proteomics, v. 256, p. 104497, 2022. MATIAS, et al. In vivo biocompatibility analysis of the recellularized canine tracheal scaffolds with canine epithelial and endothelial progenitor cells. Bioengineered, v. 13, p. 3551-3565, 2022. MATIAS, et al. Ionic detergent under pressure-vacuum as an innovative strategy to generate canine tracheal scaffold for organ engineering. CELLS TISSUES ORGANS, v. 1, p. 1, 2022. MATIAS, et al. Optimization of Canine Placenta Decellularization: An Alternative Source of Biological Scaffolds for Regenerative Medicine. CELLS TISSUES ORGANS, v. 1, p. 1-9, 2018. MATIAS, et al. Recellularization Of Canine Placental Extracellular Matrix: Mesenchymal Stem Cells Applied To Tissue Bioengineering. HSOA Journal of Stem Cells Research, Development & Therapy, v. 6, p. 1-6, 2020. SILVA, et al. Bacterial Cellulose and ECM Hydrogels: An Innovative Approach for Cardiovascular Regenerative Medicine. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v. 23, p. 3955, 2022. SILVA, et al. Biological Characterization of Polymeric Matrix and Graphene Oxide Biocomposites Filaments for Biomedical Implant Applications: A Preliminary Report. Polymers, v. 13, p. 3382, 2021. YOSHINAGA, et al. Testicular subcutaneous allografting followed by immunosuppressive treatment promotes maintenance of spermatogonial cells in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY, v. 112, p. 108-115, 2021.

Tipo de oferecimento da disciplina:

Presencial

Class type:

Presencial