Introdução ao Cálculo Numérico e aplicações à solução de problemas deFísica.
Introdução ao cálculo numérico: erros, precisão e aritmética de pontoflutuante. Zeros de funções: métodos de aproximações sucessivas, Newton e bissecção de intervalos. Matrizes e sistemas lineares: eliminação de Gauss e Gauss-Seidel; inversão de matrizes. Interpolação e aproximação de funções: polinômio interpolador de Newton e interpolação lagrangeana. Aproximação de funções por mínimos quadrados. Integração numérica: regra do trapézio, regra de Simpson, quadratura gaussiana e ``splines''. Equações diferenciais ordinárias: métodos Runge-Kutta e preditor-corretor. Cada item será ilustrado com a sua aplicação à solução de um problema de Física.
BIBLIOGRAFIA BÁSICA: B. Carnahan, H.A. Luther, APPLIED NUMERICALMETHODS, John Wiley, E.W. Schimid, E.G. Spitz, W. Losch, THEORETICAL PHYSICS IN THE PERSONAL COMPUTER W.H. Press, NUMERICAL RECIPES -- THE ART OF SCIENTIFIC COMPUTING.