Introduzir conceitos básicos de análise real visando tornar os alunos familiarizados com técnicas de demonstração em Matemática.
1. Números reais: introdução axiomática. Intervalos encaixantes. Sequências numéricas. Sequências de Cauchy. Limite superior e inferior. Sequências monótona limitadas. 2. Continuidade: teoremas do anulamento, do máximo e do mínimo, preservação da conexidade. Continuidade por sequências. Continuidade uniforme. 3. Derivabilidade: diferencial e teorema do valor médio. 4. Integral de Riemann: definição e exemplos especiais. Integrabilidade de funções contínuas e teorema fundamental do Cálculo. Critérios de Integrabilidade. 5. Séries numéricas e critérios de convergência. 6. Sequências e séries de funções: convergência pontual e uniforme, teste M de Weierstrass. Continuidade, integrabilidade e derivabilidade com convergência uniforme. Séries de potências e propriedades.
BIBLIOGRAFIA BÁSICA: D. G. Figueiredo, ANÁLISE I, Livros Técnicos e Científicos, Rio de Janeiro, 1974 E. L. Lima, ANÁLISE REAL, vol. I, Coleção Matemática Universitária, IMPA, 1989 M. Spivak, CALCULUS, Benjamin, New York, 1967.