Informações da Disciplina

 Preparar para impressão 

Júpiter - Sistema de Gestão Acadêmica da Pró-Reitoria de Graduação


Instituto de Matemática e Estatística
 
Matemática
 
Disciplina: MAT0315 - Introdução à Análise
Introduction to Analysis

Créditos Aula: 4
Créditos Trabalho: 1
Carga Horária Total: 90 h ( Práticas como Componentes Curriculares = 30 h )
Tipo: Semestral
Ativação: 01/01/2018 Desativação:

Objetivos
Introduzir os conceitos básicos de análise real. Apresentar formalmente a noção de completude dos números reais e suas consequências. Desenvolver atividades de Prática como Componente Curricular. Desenvolver atividades de Prática como Componente Curricular.
 
 
 
Docente(s) Responsável(eis)
453847 - David Pires Dias
 
Programa Resumido
Abordagem axiomática dos números reais. Definição formal de limite e continuidade. Demonstrações rigorosas de alguns dos principais teoremas de Cálculo Diferencial e Integral. Desenvolvimento de atividades que propiciem ao aluno relacionar a teoria com a prática, isto é, fazer com que o estudante reflita sobre a prática profissional relacionando conteúdos estudados na disciplina com temas e ideias da Educação Básica.
 
 
 
Programa
Axiomas de corpo ordenado completo. Construção do conjunto dos números reais. Propriedade arquimediana. Propriedade dos intervalos encaixantes. Sequências de Cauchy. Limites de sequências de números reais. Séries numéricas: critérios de convergência. Expansão decimal. Noções de topologia da reta. Limite e continuidade de funções de uma variável real. Função exponencial. Potência de expoente real. Logaritmo. Teorema do Valor Intermediário. Teorema de Weierstrass. Teorema do Valor Médio. Integral de Riemann. Teorema Fundamental do Cálculo. Desenvolvimento de atividades que propiciem ao aluno momentos de reflexão sobre a prática profissional, buscando relações não só entre teoria e prática, mas também nuances de como conteúdos e competências estudados e/ou adquiridos na Universidade podem modificar a visão e consequentemente a vivência cotidiana de um professor da Educação Básica.
 
 
 
Avaliação
     
Método
Aulas teóricas e de exercícios.
Critério
O aluno deve ser aprovado tanto nas atividades relacionadas ao conteúdo matemático como nas atividades relacionadas à Prática como Componente Curricular. Neste caso, a média final é a média ponderada das duas notas obtidas anteriormente.
Norma de Recuperação
Cada docentes (ou equipe), deverá decidir qual o peso p onde 1<=p<=4. A média final, será média ponderada da nota do semestre com a da recuperação com o peso acima.
 
Bibliografia
     
G. Àvila, Análise Matemática para Licenciatura, 3a. edição, Edgard Blücher, 2009; D.G. Figueiredo, Análise I, IMPA - Livros Técnicos e Científicos, 1975; E.L. Lima, Curso de Análise, vol.1, IMPA, 1976-81; A.J. White, Análise real: uma introdução, Edgard Blücher, EDUSP, McGraw-Hill, São Paulo, 1975; Rudin, W. Pincípios de Análise Matema´tica, tradução de Eliana R. H. Brito, Ed. Universidade de Brasília, Rio de Janeiro, 1971; Spivak, B., Calculus, W.A. Benjamin Inc., Nova Iorque, 1967. Artigos da RPM e da Educação Matemática em Revista - EMR - pertinentes aos temas estudados.
 

Clique para consultar os requisitos para MAT0315

Clique para consultar o oferecimento para MAT0315

Créditos | Fale conosco
© 1999 - 2020 - Superintendência de Tecnologia da Informação/USP