Informações da Disciplina

 Preparar para impressão 

Júpiter - Sistema de Gestão Acadêmica da Pró-Reitoria de Graduação


Escola Politécnica
 
Engenharia Metalúrgica e Materiais
 
Disciplina: PMT3503 - Application of Surface Science and Surface Engineering in Welding and Joining

Créditos Aula: 2
Créditos Trabalho: 0
Carga Horária Total: 30 h
Tipo: Semestral
Ativação: 01/01/2018 Desativação:

Objetivos
The main objective of the course is to provide participants with an introduction to surface thermodynamics with emphasis in welding and joining of materials, defining wetting and spreading of a liquid over a solid; deduction of Young Equation for free wetting; definition of Electrowetting; Young-Lippmann equation deduction and  methods of surface tension measurement.
 
Docente(s) Responsável(eis)
56524 - Sérgio Duarte Brandi
 
Programa Resumido
1) Lecture: “From tera to nano: the evolution of surface science and surface engineering applied to welding and joining of materials”; 2) Concepts related to surfaces; 3) Timeline of surface tension concepts; 4) Difference between surface tension, surface energy and surface free energy; 5) Wetting and spreading; 6) Methods for measurement of liquid/vapor surface tension; 7) Application of surface science and surface engineering in welding and joining.
 
Programa
1) Lecture: “From tera to nano: the evolution of surface science and surface engineering applied to welding and joining of materials”
2) Concepts related to surfaces: surface tension; types of interfaces; wetting; spreading; wetting criteria; free and forced spreading; dewetting; electrowetting and photoelectrowetting
3) Timeline of surface tension concepts
4) Difference between surface tension, surface energy and surface free energy. 
5) Wetting and spreading: 5.1) Young equation deduction (Gibbs interface and van der Walls surface): effect of surface roughness on equilibrium contact angle; interface reaction; effect of chemical elements on liquid/vapor surface tension; effect of chemical elements on liquid/vapor surface tension; nanowetting; 5.2) Mechanism of brazing and soldering fluxes action to promote wetting; 5.3) Mechanism of dewetting (in polymers); 5.4) Free spreading; 5.5) Work of adhesion; 5.6) Electrowetting: Young-Lippmann equation deduction; 5.7) Origami capillary
6) Methods for measurement of liquid/vapor surface tension: 6.1) Pendant droplet test; 6.2) Sessile droplet test; 6.3) Wilhelmy balance test (wetting balance); 6.4) Other tests
7) Application of surface science and surface engineering in welding and joining: 7.1) Hydrostatic and hydrodynamic effect of surface tension on welding and joining of materials; 7.2) Modeling of weld bead shape; 7.3) Effect of welding parameters on the chemical composition of weld metal; 7.4) Wetting and spreading of lead-free solders for electronic applications; 7.5) Lead-free soldering for electronic application; 7.6) Wetting of PE (polyethylene) deposited by thermal spray in aluminum and alumina
 
Avaliação
     
Método
Written tests and seminar.
Critério
MP = mean grade of three tests = (P1 + P2 + P3)/3 MS= seminar grade MF= final grade = [(3MP+MS)/4] > 5.
Norma de Recuperação
Written test.
 
Bibliografia
     
1)	Young, T. – “An essay on the cohesion of fluids”, Phil. Trans. Royal Soc., parte I, pg. 65-87, 1805.
2)	Laplace, P. S. – “Sur l'action capillaire”. In: "Traité de mécanique céleste", suplemento ao 'X' livro, pg. 229-421, Paris, França, 1806.
3)	Gibbs, J. W. –  “ Collected works of W.R.Gibbs”, Yale University Press, EUA, pg. 219-252, 1948.
4)	Guggenheim, E. A. – “Termodinamica para quimicos y fisicos”, Editorial Tecnos, Madrid Espanha, 470 pg., 1970.
5)	Murr, L.E. – “Interfacial phenomena in metals and alloys”, Addison-Wesley Pub. Co., EUA, 376 pg., 1975.
6)	Bikerman, J.J. – “Theories of capillary attraction”, Centaurus, vol. 19, no. 3, pg. 182-206, 1975.
7)	de Gennes, P.G. – “Wetting: statics and dynamics” , Rev, Mod. Phys., vol. 57, no. 3, part I, pg 827-863, 1985. 
8)	Adamson, A.W. – “Physical chemistry of surfaces”, 5ª edição, John Wiley & Sons, EUA, 777 pg., 1990.
9)	N. Eustathopoulos, N.; Nicholas, M.G.; Drevet, B. – “Wettability at high temperatures”, Pergamon Press Co., Inglaterra, 420 pg., 1999.
10)	Kaplan, W. D. – “Interface science”, J. Mat. Sci., vol 42, pg. 9501-9503, 2007.
11)	Childe, V. G. – “The bronze age”, Cambridge Press, 278 pp., 1930.
12)	Lippmann, G. - “Relations entre les phénomènes électriques et capillaries” Ann. Chim. Phys., vol.5 , pp. 494-549, 1875.
13)	de  Gennes, P-G.; Brochard-Wyart, F.; Quéré, D. – “Capillarity and wetting phenomena”, Springer Verlag, 303 pp., 2004.
14)	Li, Dongqing (ed.) – “Enclyclopedia of microfluidics and nanfluidics”, Springer Verlag, pg. 606-615, 2008.
15)	Grahame, D.C. – “The Electrical Double Layer and the Theory of Electrocapillarity”, Chem. Rev., vol. 41, no. 3, pp. 441-501, 1947. 
16)	Quilliet C.; Berge B. – “Electrowetting: a recent outbreak”, Current Opinion in Colloids and Interface Science, Volume 6, no. 1, pp. 34-39, 2001.
17)	Mohilner, D.M.; Beck. T. R. –”Thermodynamic theory of electrocapillarity for solid metal electrodes”, J. Phys. Chem., vol 83, no. 9, pp. 1160-1166, 1979.
18)	Koenig, F.O. – “The thermodynamics of the electrocapillary curve. I”, J. Phys. Chem., vol. 38, no. 3, pg. 111-128, 1934.
19)	Mugele, F.; Baret, J-C. – “Electrowetting: from basics to applications” Topical Review, J. Phys.: Condens. Matter, vol 17, no. 28, pp. 705R-774R, 2005.
20)	Welding and joining magazines.
 

Clique para consultar os requisitos para PMT3503

Clique para consultar o oferecimento para PMT3503

Créditos | Fale conosco
© 1999 - 2024 - Superintendência de Tecnologia da Informação/USP